Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain.
نویسندگان
چکیده
Among the large set of cell surface glycan structures, the carbohydrate polymer polysialic acid (polySia) plays an important role in vertebrate brain development and synaptic plasticity. The main carrier of polySia in the nervous system is the neural cell adhesion molecule NCAM. As polySia with chain lengths of more than 40 sialic acid residues was still observed in brain of newborn Ncam(-/-) mice, we performed a glycoproteomics approach to identify the underlying protein scaffolds. Affinity purification of polysialylated molecules from Ncam(-/-) brain followed by peptide mass fingerprinting led to the identification of the synaptic cell adhesion molecule SynCAM 1 as a so far unknown polySia carrier. SynCAM 1 belongs to the Ig superfamily and is a powerful inducer of synapse formation. Importantly, the appearance of polysialylated SynCAM 1 was not restricted to the Ncam(-/-) background but was found to the same extent in perinatal brain of WT mice. PolySia was located on N-glycans of the first Ig domain, which is known to be involved in homo- and heterophilic SynCAM 1 interactions. Both polysialyltransferases, ST8SiaII and ST8SiaIV, were able to polysialylate SynCAM 1 in vitro, and polysialylation of SynCAM 1 completely abolished homophilic binding. Analysis of serial sections of perinatal Ncam(-/-) brain revealed that polySia-SynCAM 1 is expressed exclusively by NG2 cells, a multifunctional glia population that can receive glutamatergic input via unique neuron-NG2 cell synapses. Our findings sug-gest that polySia may act as a dynamic modulator of SynCAM 1 functions during integration of NG2 cells into neural networks.
منابع مشابه
SynCAM IN FORMATION AND FUNCTION OF SYNAPTIC SPECIALIZATIONS
SynCAM 1 (Synaptic Cell Adhesion Molecule 1), a member of the immunoglobulin (Ig) superfamily of proteins, is an intercellular adhesion molecule at synapses in the central nervous system (CNS). It mediates interactions that bridge the synaptic cleft between preand postsynaptic membranes. SynCAM 1 has an active role in synaptic differentiation and induces formation of new presynaptic terminals. ...
متن کاملIn vivo imaging demonstrates dendritic spine stabilization by SynCAM 1
Formation and stability of synapses are required for proper brain function. While it is well established that synaptic adhesion molecules are important regulators of synapse formation, their specific role during different phases of synapse development remains unclear. To investigate the function of the synaptic cell adhesion molecule SynCAM 1 in the formation, stability, and maintenance of spin...
متن کاملLateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation.
Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its...
متن کاملSynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones.
Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing ...
متن کاملImpact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid synthesis during postnatal mouse brain development.
Polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule (NCAM), is the key regulator of NCAM-mediated functions and crucial for normal brain development, postnatal growth, and survival. Two polysialyltransferases, ST8SiaII and ST8SiaIV, mediate polySia biosynthesis. To dissect the impact of each enzyme during postnatal brain development, we monitored th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 22 شماره
صفحات -
تاریخ انتشار 2010